Admitting a Semihyperring with Zero of Certain Linear Transformation Subsemigroups of $L_{R}(V, W)$ (Part II)

S. Chaopraknoi, S. Hobuntud and S. Pianskool

Abstract

A semihyperring with zero is a triple $(A,+, \cdot)$ such that $(A,+)$ is a semihypergroup, $(A, \cdot \cdot)$ is a semigroup, \cdot is distributive over + and there exists $0 \in A$ (called a zero) such that $x+0=0+x=\{x\}$ and $x \cdot 0=0 \cdot x=0$ for all $x \in A$. For a semigroup S, let S^{0} be S if S has a zero and S contains more than one element, otherwise, let S^{0} be the semigroup S with a zero adjoined. We say that a semigroup S is said to admit a semihyperring with zero if there exists a hyperoperation + on S^{0} such that $\left(S^{0},+, \cdot\right)$ is a semihyperring with zero 0 where \cdot is the operation on S^{0} and 0 is the zero of S^{0}. Let V be a vector space over a division ring R, W a subspace of V and $L_{R}(V, W)$ the semigroup under composition of all linear transformations from V into W. For each $\alpha \in L_{R}(V, W)$, let $F(\alpha)$ consist of all elements in V fixed by α. Denote by $O M_{R}(V, W), O E_{R}(V, W), A I_{R}(\underline{V}, W)$ and $A I_{R}(V, \underline{W})$ the set of all linear transformations α in $L_{R}(V, W)$ where $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ are infinite, the set of all linear transformations α in $L_{R}(V, W)$ where $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)$ are infinite, the set of all linear transformations α in $L_{R}(V, W)$ where $\operatorname{dim}_{R}(V / F(\alpha))$ are finite and the set of all linear transformations α in $L_{R}(V, W)$ where $\operatorname{dim}_{R}(W / F(\alpha))$ are finite, respectively. Moreover, let H and S be subsemigroups of $A I_{R}(\underline{V}, W)$ and $A I_{R}(V, \underline{W})$, respectively.

We show that $O M_{R}(V, W) \cup H, O E_{R}(V, W) \cup H, O M_{R}(V, W) \cup S$ and $O E_{R}(V, W) \cup S$ are semigroups. Furthermore, we determine whether or when they admit the structure of a semihyperring with zero.

Keywords : semihyperring, linear transformation semigroup.
2000 Mathematics Subject Classification : 20M20, 20N20.

1 Introduction and Preliminaries

A hyperoperation on a nonempty set H is a map $\circ: H \times H \rightarrow P^{*}(H)$ where $P(H)$ is the power set of H and $P^{*}(H)=P(H) \backslash\{\emptyset\}$. For $A, B \subseteq H$, let $A \circ B$

[^0]be the union of all subsets $a \circ b$ of H where $a \in A$ and $b \in B$. A semihypergroup is a system (H, \circ) where H is a nonemty set, ○ is a hyperoperation on H and $(x \circ y) \circ z=x \circ(y \circ z)$ for all $x, y, z \in H$. A hypergroup is a semihypergroup (H, \circ) such that $H \circ x=x \circ H=H$ for all $x \in H$. For x, y in a hypergroup $(H, \circ), x$ is called an inverse of y if there exists an identity e of (H, \circ) such that $e \in(x \circ y) \cap(y \circ x)$. A hypergroup H is called regular if every element of H has an inverse in H. A regular hypergroup (H, \circ) is said to be reversible if for $x, y, z \in H, x \in y \circ z$ implies $z \in u \circ x$ and $y \in x \circ v$ for some inverse u of y and some inverse v of z. A canonical hypergroup is a hypergroup (H, \circ) such that
(i) (H, \circ) is commutative,
(ii) (H, \circ) has a scalar identity,
(iii) every element of H has a unique inverse in H and
(iv) (H, \circ) is reversible.

By a semihyperring we mean a triple $(A,+, \cdot)$ such that
(i) $(A,+)$ is a semihypergroup,
(ii) (A, \cdot) is a semigroup and
(iii) $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$ for all $x, y, z \in A$.

An element 0 of a semihyperring $(A,+, \cdot)$ is called a zero of $(A,+, \cdot)$ if $x+0=$ $0+x=x(=\{x\} 0)$ and $x \circ 0=0 \circ x=0$ for all $x \in A$. By the definition, every semiring with zero is a semihyperring with zero. A Krasner hyperring is a system $(A,+, \cdot)$ where
(i) $(A,+)$ is a canonical hypergroup,
(ii) (A, \cdot) is a semigroup with zero 0 where 0 is the scalar identity of $(A,+)$ and
(iii) the operation • is distributive over the hyperoperation + .

Then every (Krasner) hyperring is a semihyperring with zero. Consequently, semihyperrings with zero are a generalization of hyperrings. In [2], if A is a set whose cardinality is at least 3 and 0 is an element of A, then $(A,+, \cdot)$ with

$$
\begin{aligned}
x+0 & =0+x=\{x\} & & \text { for all } x \in A \\
x+y & =A & & \text { for all } x, y \in A \backslash\{0\} \\
x \cdot y & =0 & & \text { for all } x, y \in A .
\end{aligned}
$$

is clearly a semihyperring with zero 0 but not a hyperring.
A semigroup S is said to admit a ring[hyperring] structure if $\left(S^{0},+, \cdot\right)$ is a ring[hyperring] for some operation[hyperoperation] + on S^{0} where • is the operation on S^{0}. Similarly, S is said to admit a semihyperring with zero if there exists a hyperoperation + on S^{0} such that $\left(S^{0},+, \cdot\right)$ is a semihyperring with zero. Semigroups admitting ring structures have long been studied. For examples, see [3]
and [6]. There were some studies of semigroups admitting hyperring structures. These can be seen from (4) and 5.

Throughout this paper, let V be a vector space over a division ring R, W a subspace of V and $L_{R}(V, W)$ the semigroup under composition of all linear transformations from V into W. Then $L_{R}(V, W)$ admits a ring structure. For $\alpha \in L_{R}(V, W)$, let $F(\alpha)$ consist of all elements in V fixed by α. Then $F(\alpha)$ is a subspace of W so that it is also a subspace of V for all $\alpha \in L_{R}(V, W)$. Moreover, let

$$
\begin{aligned}
O M_{R}(V, W) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Ker} \alpha \text { is infinite }\right\} \\
O E_{R}(V, W) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(W / \operatorname{Im} \alpha) \text { is infinite }\right\}, \\
A I_{R}(\underline{V}, W) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(V / F(\alpha)) \text { is finite }\right\} \\
A I_{R}(V, \underline{W}) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(W / F(\alpha)) \text { is finite }\right\} .
\end{aligned}
$$

It has been shown in [7] that $O M_{R}(V, W)$ and $O E_{R}(V, W)$ are subsemigroups of $L_{R}(V, W)$. This paper, first, shows that $O M_{R}(V, W) \cup H, O E_{R}(V, W) \cup H$, $O M_{R}(V, W) \cup S$ and $O E_{R}(V, W) \cup S$ are semigroups where H and S are subsemigroup of $A I_{R}(\underline{V}, W)$ and $A I_{R}(V, \underline{W})$, respectively. The other purpose of this paper is showing that whether or when $O M_{R}(V, W) \cup H, O E_{R}(V, W) \cup H, O M_{R}(V, W) \cup S$ and $O E_{R}(V, W) \cup S$ admit the structure of a semihyperring with zero.

2 Main Results

In this paper, we assume that $\operatorname{dim}_{R} V$ is infinite because if $\operatorname{dim}_{R} V$ is finite, then $O M_{R}(V, W)$ and $O E_{R}(V, W)$ are empty sets. In order to study $O E_{R}(V, W)$, we must assume further that $\operatorname{dim}_{R} W$ is infinite otherwise $O E_{R}(V, W)$ is an empty set.

2.1 Subsemigroups of $L_{R}(V, W)$

Our aim of this subsection is to show that $O M_{R}(V, W) \cup H, O E_{R}(V, W) \cup H$, $O M_{R}(V, W) \cup S$ and $O E_{R}(V, W) \cup S$ are semigroups. In order to do so, we prove that all of them are subsemigroups of $L_{R}(V, W)$.

Proposition 2.1. ([77]) The following statements hold.
(i) $O M_{R}(V, W)$ is a right ideal of $L_{R}(V, W)$.
(ii) $O E_{R}(V, W)$ is a left ideal of $L_{R}(V, W)$.

Note 2.1. $A I_{R}(\underline{V}, W)$ is a subset of $A I_{R}(V, \underline{W})$ because $W / F(\alpha)$ is a subspace of $V / F(\alpha)$ for any $\alpha \in L_{R}(V, W)$.

Proposition 2.2. $A I_{R}(\underline{V}, W)$ and $A I_{R}(V, \underline{W})$ are subsemigroups of $L_{R}(V, W)$.

Proof. Let $\alpha, \beta \in A I_{R}(\underline{V}, W)\left[A I_{R}(V, \underline{W})\right]$. Then $\operatorname{dim}_{R}(V / F(\alpha))\left[\operatorname{dim}_{R}(W / F(\alpha))\right]$ and $\operatorname{dim}_{R}(V / F(\beta))\left[\operatorname{dim}_{R}(W / F(\beta))\right]$ are finite. We claim that $\operatorname{dim}_{R}(V / F(\alpha \beta))$ $\left[\operatorname{dim}_{R}(W / F(\alpha \beta))\right]$ is finite. Since $F(\alpha) \cap F(\beta) \subseteq F(\alpha \beta)$, it suffices to show that $\operatorname{dim}_{R}(V / F(\alpha) \cap F(\beta))\left[\operatorname{dim}_{R}(W /(F(\alpha) \cap F(\beta))]\right.$ is finite. Let B_{1} be a basis of $F(\alpha) \cap F(\beta)$ and $B_{2} \subseteq F(\alpha) \backslash B_{1}$ and $B_{3} \subseteq F(\beta) \backslash B_{1}$ be such that $B_{1} \cup B_{2}$ and $B_{1} \cup B_{3}$ are bases of $F(\alpha)$ and $F(\beta)$, respectively. We will show that $\left(B_{1} \cup B_{2}\right) \cup B_{3}$ is linearly independent over R. Let $u_{1}, u_{2}, \ldots, u_{k} \in B_{1} \cup B_{2}, v_{1}, v_{2}, \ldots, v_{l} \in B_{3}$ be distinct and $\sum_{i=1}^{k} a_{i} u_{i}+\sum_{j=1}^{l} b_{j} v_{j}=0$ where $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{l} \in R$. Then $\sum_{i=1}^{k} a_{i} u_{i}=-\sum_{j=1}^{l} b_{j} v_{j} \in F(\alpha) \cap F(\beta)=\left\langle B_{1}\right\rangle$. Hence $\sum_{j=1}^{l} b_{j} v_{j} \in\left\langle B_{1}\right\rangle \cap\left\langle B_{3}\right\rangle=\{0\}$. Since B_{3} is linearly independent, $b_{j}=0$ for all $j=1,2, \ldots, l$, so that $\sum_{i=1}^{k} a_{i} u_{i}=0$. This implies that $a_{i}=0$ for all $i=1,2, \ldots, k$. Hence $\left(B_{1} \cup B_{2}\right) \cup B_{3}$ is linearly independent over R. Let $B_{4} \subseteq V \backslash\left(B_{1} \cup B_{2}\right) \cup B_{3}\left[W \backslash\left(B_{1} \cup B_{2}\right) \cup B_{3}\right]$ be such that $B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$ is a basis of $V[W]$. Hence $\left\{v+F(\alpha) \mid v \in B_{3} \cup B_{4}\right\}$ is a basis of $V / F(\alpha)[W / F(\alpha)]$ and $\left\{v+F(\alpha) \mid v \in B_{2} \cup B_{4}\right\}$ is a basis of $V / F(\beta)[W / F(\beta)]$. But $\operatorname{dim}_{R}(V / F(\alpha))\left[\operatorname{dim}_{R}(W / F(\alpha))\right]$ and $\operatorname{dim}_{R}(V / F(\beta))\left[\operatorname{dim}_{R}(W / F(\beta))\right]$ are finite, so $B_{3} \cup B_{4}$ and $B_{2} \cup B_{4}$ are finite. Therefore $B_{2} \cup B_{3} \cup B_{4}$ is finite. Hence $\{v+(F(\alpha) \cap F(\beta))\}$ is a basis of $V /(F(\alpha) \cap F(\beta))[W /(F(\alpha) \cap F(\beta))]$. This implies that $\operatorname{dim}_{R}(V / F(\alpha) \cap F(\beta))\left[\operatorname{dim}_{R}(W /(F(\alpha) \cap F(\beta))]\right.$ is finite.

Lemma 2.3. $A I_{R}(V, \underline{W}) O M_{R}(V, W) \subseteq O M_{R}(V, W)$.
Proof. Let $\alpha \in A I_{R}(V, \underline{W})$ and $\beta \in O M_{R}(V, W)$. Let B_{1} be a basis of $F(\alpha) \cap \operatorname{Ker} \beta$, $B_{2} \subseteq \operatorname{Ker} \beta \backslash B_{1}$ such that $B_{1} \cup B_{2}$ is a basis of $\operatorname{Ker} \beta \cap W, B_{3} \subseteq \operatorname{Ker} \beta \backslash B_{1} \cup B_{2}$ such that $B_{1} \cup B_{2} \cup B_{3}$ is a basis of $\operatorname{Ker} \beta$. Since $\beta \in O M_{R}(V, W), B_{1} \cup B_{2} \cup B_{3}$ is infinite. Let $v_{1}, v_{2}, \ldots, v_{n}$ be distinct elements of B_{2} and let $a_{1}, a_{2}, \ldots, a_{n} \in R$ be such that $\sum_{i=1}^{n} a_{i}\left(v_{i}+F(\alpha)\right)=F(\alpha)$. Then $\sum_{i=1}^{n} a_{i} v_{i} \in F(\alpha) \cap \operatorname{Ker} \beta$. But B_{1} is a basis of $F(\alpha) \cap \operatorname{Ker} \beta$ and $B_{1} \cup B_{2}$ is linearly independent over R, so $a_{i}=0$ for all $i \in\{1,2, \ldots, n\}$. This shows that $\left\{v+F(\alpha) \mid v \in B_{2}\right\}$ is a linearly independent subset of the quotient space $W / F(\alpha)$ and $u+F(\alpha) \neq w+F(\alpha)$ for all distinct $u, w \in B_{2}$. Since $\operatorname{dim}_{R} W / F(\alpha)<\infty$, the set $\left\{v+F(\alpha) \mid v \in B_{2}\right\}$ is finite. But $\left|\left\{v+F(\alpha) \mid v \in B_{2}\right\}\right|=\left|B_{2}\right|$ so that B_{2} is finite. Let $B_{4} \subseteq W \backslash B_{1} \cup B_{2}$ be such that $B_{1} \cup B_{2} \cup B_{4}$ is a basis of W and let $C=B_{1} \cup B_{2} \cup B_{4}$. Moreover, let $B_{5} \subseteq V \backslash C \cup B_{3}$ be such that $C \cup B_{3} \cup B_{5}$ is a basis of V and let $B=C \cup B_{3} \cup B_{5}$.

Case 1. $B \backslash C$ is finite. Since $B_{3} \subseteq B \backslash C,\left|B_{3}\right| \leq|B \backslash C|$. Thus B_{3} is finite. Hence $B_{2} \cup B_{3}$ is finite. This implies that B_{1} is infinite. Since $B_{1} \subseteq F(\alpha) \cap \operatorname{Ker} \beta$, we have $B_{1} \alpha \beta=B_{1} \beta=\{0\}$, so $B_{1} \subseteq \operatorname{Ker} \alpha \beta$. Hence $\operatorname{dim}_{R} \operatorname{Ker} \alpha \beta$ is infinite. Thus $\alpha \beta \in O M_{R}(V, W)$.

Case 2. $B \backslash C$ is infinite. Claim that $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is infinite. Suppose that $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is finite. Let $E=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right\}$ be a basis of $\operatorname{Ker} \alpha$ such that $E \subseteq B$.

Clearly, $B \backslash(C \cup E)$ is infinite. Next, we will show that there is $w \in B \backslash(C \cup E)$ such that $w \alpha=v \alpha$ for some $v \in V \backslash\langle E \cup\{w\}\rangle$. Suppose that for each $w \in B \backslash(C \cup E)$,

$$
\begin{equation*}
w \alpha \neq v \alpha \quad \text { for all } v \in V \backslash\langle E \cup\{w\}\rangle \tag{1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
w_{1} \alpha \neq w_{2} \alpha \quad \text { for every } w_{1} \neq w_{2} \in B \backslash(C \cup E) \tag{2}
\end{equation*}
$$

Hence $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ consists of distinct elements. Since $B \backslash(C \cup E)$ is infinite, the set $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ must be infinite. We will show that $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ is linearly independent set. Assume that

$$
a_{1} w_{1} \alpha+a_{2} w_{2} \alpha+\cdots+a_{n} w_{n} \alpha=0
$$

where $a_{1}, a_{2}, \ldots, a_{n} \in R$ and $w_{1}, w_{2}, \ldots, w_{n} \in B \backslash(C \cup E)$. Hence

$$
\left(a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}\right) \alpha=0 .
$$

Therefore $a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n} \in \operatorname{Ker} \alpha$. Hence

$$
a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n} \in\langle E\rangle \cap\langle B \backslash(C \cup E)\rangle=\{0\} .
$$

Consequently, $a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}=0$ so that $a_{1}=a_{2}=\cdots=a_{n}=0$. Hence $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ is linearly independent. Let $w^{*} \in B \backslash(C \cup E)$. Suppose that $\left(w^{*} \alpha\right) \alpha=w^{*} \alpha$, so $w^{*} \alpha \in\left\langle E \cup\left\{w^{*}\right\}\right\rangle$ because $w^{*} \alpha \neq w^{*}$. Then there are $b, a_{1}, a_{2}, \ldots, a_{k} \in R$ such that $w^{*} \alpha=b w^{*}+\sum_{i=1}^{k} a_{i} v_{i}^{\prime}$. Thus

$$
b w^{*}=w^{*} \alpha-\sum_{i=1}^{k} a_{i} v_{i}^{\prime} \in\langle C \cup E\rangle
$$

Hence $b w^{*} \in\langle B \backslash(C \cup E)\rangle \cap\langle C \cup E\rangle=\{0\}$, we have $b w^{*}=0$. Thus

$$
w^{*} \alpha=b w^{*}+\sum_{i=1}^{k} a_{i} v_{i}^{\prime}=\sum_{i=1}^{k} a_{i} v_{i}^{\prime} \in \operatorname{Ker} \alpha,
$$

so $0=\left(w^{*} \alpha\right) \alpha=w^{*} \alpha$. Therefore $w^{*} \in \operatorname{Ker} \alpha$ which leads to a contradiction. Thus $\left(w^{*} \alpha\right) \alpha \neq w^{*} \alpha$. Hence $w \alpha \notin F(\alpha)$ for all $w \in B \backslash(C \cup E)$. Next, we will show that $\{w \alpha+F(\alpha) \mid w \in B \backslash(C \cup E)\}$ is a linearly independent subset of $W / F(\alpha)$. Assume that

$$
\sum_{i=1}^{n} a_{i}\left(w_{i} \alpha+F(\alpha)\right)=F(\alpha)
$$

where $a_{1}, a_{2}, \ldots, a_{n} \in R$ and $w_{1}, w_{2}, \ldots, w_{n} \in B \backslash(C \cup E)$. Hence $\sum_{i=1}^{n} a_{i} w_{i} \alpha \in F(\alpha)$.
Therefore

$$
\left(\sum_{i=1}^{n} a_{i} w_{i} \alpha\right) \alpha=\sum_{i=1}^{n} a_{i} w_{i} \alpha \in F(\alpha)
$$

Thus $\left(\sum_{i=1}^{n} a_{i} w_{i} \alpha-\sum_{i=1}^{n} a_{i} w_{i}\right) \alpha=0 . \quad$ Hence $\sum_{i=1}^{n} a_{i} w_{i} \alpha-\sum_{i=1}^{n} a_{i} w_{i} \in \operatorname{Ker} \alpha$. It follows that

$$
\sum_{i=1}^{n} a_{i} w_{i} \alpha-\sum_{i=1}^{n} a_{i} w_{i}=\sum_{j=1}^{k} b_{j} v_{j}^{\prime}
$$

Thus

$$
\sum_{i=1}^{n} a_{i} w_{i}=\sum_{i=1}^{n} a_{i} w_{i} \alpha-\sum_{j=1}^{k} b_{j} v_{j}^{\prime} \in\langle C \cup E\rangle
$$

This implies that $\sum_{i=1}^{n} a_{i} w_{i} \in\langle B \backslash(C \cup E)\rangle \cap\langle C \cup E\rangle=\{0\}$. Since $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ is linearly independent, $a_{1}=a_{2}=\cdots=a_{n}=0$. Hence $\{w \alpha+F(\alpha) \mid w \in B \backslash(C \cup E)\}$ is a linearly independent subset of $W / F(\alpha)$.

We will show that for all $v, w \in B \backslash(C \cup E)$, if $v \alpha \neq w \alpha$, then

$$
v \alpha+F(\alpha) \neq w \alpha+F(\alpha)
$$

Let $v, w \in B \backslash(C \cup E)$. Assume that $v \alpha \neq w \alpha$. Suppose that $v \alpha+F(\alpha)=$ $w \alpha+F(\alpha)$. We see that $v \alpha-w \alpha \in F(\alpha)$. Hence $(v \alpha-w \alpha) \alpha=v \alpha-w \alpha$. Thus $(v \alpha-w \alpha) \alpha+w \alpha=v \alpha$. Therefore

$$
\begin{equation*}
(v \alpha-w \alpha+w) \alpha=v \alpha \tag{3}
\end{equation*}
$$

If $v \alpha-w \alpha+w \in\langle E \cup\{v\}\rangle$, then there are $b, a_{1}, a_{2}, \ldots, a_{k} \in R$ such that $v \alpha-w \alpha+w=b v+\sum_{i=1}^{k} a_{i} v_{i}^{\prime}$. Clearly, $b v-w=v \alpha-w \alpha-\sum_{i=1}^{k} a_{i} v_{i}^{\prime} \in\langle C \cup E\rangle$. Therefore $b v-w \in\langle B \backslash(C \cup E)\rangle \cap\langle C \cup E\rangle=\{0\}$. This leads to a contradiction because of $b v=w$. Hence $v \alpha-w \alpha+w \notin\langle E \cup\{v\}\rangle$. It follows from (1) that $(v \alpha-w \alpha+w) \alpha \neq v \alpha$ contradicting (3). Thus $|\{w \alpha+F(\alpha) \mid w \in B \backslash(C \cup E)\}|=$ $|\{w \alpha \mid w \in B \backslash(C \cup E)\}|$. Since $\{w \alpha+F(\alpha) \mid w \in B \backslash(C \cup E)\}$ is a linearly independent subset of $W / F(\alpha)$ and $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ is infinite, $\operatorname{dim}_{R} W / F(\alpha)$ is infinite. A contradiction occurs. Thus there is a $w \in B \backslash(C \cup E)$ such that $w \alpha=v \alpha$ for some $v \in V \backslash\langle E \cup\{w\}\rangle$. Since $v \in V$, there are $v_{1}, v_{2}, \ldots, v_{m} \in B$ and $b_{1}, b_{2}, \ldots, b_{m} \in R$ such that $v=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{m} v_{m}$. It is clear that there is $v_{i} \notin E$ for some $i \in\{1,2, \ldots, m\}$ because $v \notin \operatorname{Ker} \alpha$ and if $w=v_{j}$ for some $j \in\{1,2, \ldots, m\}$, there is $v_{k} \notin E \cup\{w\}$ for some $k \in\{1,2, \ldots, m\}$. Without loss of generality, $v=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m}$ where
$v_{l+1}, v_{l+2}, \ldots, v_{m} \in E$. Let $w^{\prime}=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}$. Note that

$$
\begin{aligned}
w \alpha & =v \alpha \\
& =\left(b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m}\right) \alpha \\
& =\left(b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}\right) \alpha \\
& =w^{\prime} \alpha .
\end{aligned}
$$

Hence $w \alpha=w^{\prime} \alpha=\left(b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}\right) \alpha$ so $\left(w-b_{1} v_{1}-b_{2} v_{2}-\cdots-b_{l} v_{l}\right) \alpha=0$.
It follows that $w-b_{1} v_{1}-b_{2} v_{2}-\cdots-b_{l} v_{l} \in \operatorname{Ker} \alpha$. Thus

$$
w-b_{1} v_{1}-b_{2} v_{2}-\cdots-b_{l} v_{l}=c_{1} v_{1}^{\prime}+c_{2} v_{2}^{\prime}+\cdots+c_{k} v_{k}^{\prime} .
$$

Therefore

$$
w=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}+c_{1} v_{1}^{\prime}+c_{2} v_{2}^{\prime}+\cdots+c_{k} v_{k}^{\prime} .
$$

Subcase $2.1 w \neq v_{j}$ for all $j \in\{1,2, \ldots, l\}$. Hence w can be written in a linear combination of $B \backslash\{w\}$ which is a contradiction.

Subcase $2.2 w=v_{j}$ for some $j \in\{1,2, \ldots, l\}$. Without loss of generality, assume that $w=v_{1}$. Hence

$$
w=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}+c_{1} v_{1}^{\prime}+c_{2} v_{2}^{\prime}+\cdots+c_{k} v_{k}^{\prime} .
$$

Thus $0=\left(b_{1}-1\right) w+b_{2} v_{2}+\cdots+b_{l} v_{l}+c_{1} v_{1}^{\prime}+c_{2} v_{2}^{\prime}+\cdots+c_{k} v_{k}^{\prime}$. This implies that

$$
b_{1}-1=b_{2}=\cdots=b_{l}=c_{1}=\cdots=c_{k}=0
$$

We obtain that $b_{1}=1$, $w^{\prime}=b_{1} v_{1}=w$. Thus

$$
\begin{aligned}
v & =b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m} \\
& =w^{\prime}+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m} \\
& =w+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m} \\
& \in\langle C \cup E\rangle
\end{aligned}
$$

again, a contradiction occurs. Hence $\operatorname{Ker} \alpha$ is infinite. Since $\operatorname{Ker} \alpha \subseteq \operatorname{Ker} \alpha \beta$, $\operatorname{Ker} \alpha \beta$ is infinite. Therefore $\alpha \beta \in O M_{R}(V, W)$.

Proposition 2.4. If S is a subsemigroup of $A I_{R}(V, \underline{W})$, then $O M_{R}(V, W) \cup S$ is a subsemigroup of $L_{R}(V, W)$.

Proof. This follows from the fact that $O M_{R}(V, W)$ and S are subsemigroups of $L_{R}(V, W)$, Proposition 2.1 i) and Lemma 2.3.

Lemma 2.5. $A I_{R}(\underline{V}, W) O M_{R}(V, W) \subseteq O M_{R}(V, W)$.
Proof. The result follows the fact that $A I_{R}(\underline{V}, W) \subseteq A I_{R}(V, \underline{W})$.
Proposition 2.6. If H is subsemigroup of $A I_{R}(\underline{V}, W)$, then $O M_{R}(V, W) \cup H$ is a subsemigroup of $L_{R}(V, W)$.

Proof. Proposition 2.1 (i), Lemma 2.5 and the truth that both $O M_{R}(V, W)$ and H are susemigroups of $L_{R}(V, W)$ provide this result.

Lemma 2.7. For every $\alpha \in A I_{R}(V, \underline{W}),\left.\operatorname{dim}_{R} \operatorname{Ker} \alpha\right|_{W}<\infty$.
Proof. Let $\alpha \in A I_{R}(V, \underline{W})$ and B a basis of $\left.\operatorname{Ker} \alpha\right|_{W}$. Moreover, let $v_{1}, v_{2}, \ldots, v_{n} \in B$ be distinct and $a_{1}, a_{2}, \ldots, a_{n} \in R$ be such that $\sum_{i=1}^{n} a_{i}\left(v_{i}+F(\alpha)\right)=F(\alpha)$. Then $\sum_{i=1}^{n} a_{i} v_{i}=F(\alpha)$ which implies that $\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \alpha=\sum_{i=1}^{n} a_{i} v_{i}$. But $v_{1}, v_{2}, \ldots, v_{n} \in$ $\left.\operatorname{Ker} \alpha\right|_{W}$ so that $\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \alpha=0$. Thus $\sum_{i=1}^{n} a_{i} v_{i}=0$. Since $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent over R, it follows that $a_{i}=0$ for every $i \in\{1,2, \ldots, n\}$. This proves that $\{v+F(\alpha) \mid v \in B\}$ is a linearly independent subset of $W / F(\alpha)$ and $v+F(\alpha) \neq w+F(\alpha)$ for all distinct $v, w \in B$. Since $\operatorname{dim}_{R}(W / F(\alpha))$ is finite, $\{v+F(\alpha) \mid v \in B\}$ is finite. Since $|\{v+F(\alpha) \mid v \in B\}|=|B|$, we have $\left.\operatorname{dim}_{R} \operatorname{Ker} \alpha\right|_{W}<\infty$.

Proposition 2.8. $O E_{R}(V, W) A I_{R}(V, \underline{W}) \subseteq O E_{R}(V, W)$.
Proof. Let $\alpha \in O E_{R}(V, W)$ and $\beta \in A I_{R}(V, \underline{W})$. Define $\varphi: W /\left.\operatorname{Im} \alpha \rightarrow \operatorname{Im} \beta\right|_{W} / \operatorname{Im} \alpha \beta$ by

$$
(w+\operatorname{Im} \alpha) \varphi=w \beta+\operatorname{Im} \alpha \beta \text { for all } w \in W
$$

Then φ is an epimorphism. Hence

$$
(W / \operatorname{Im} \alpha) /\left.\operatorname{Ker} \varphi \cong \operatorname{Im} \beta\right|_{W} / \operatorname{Im} \alpha \beta
$$

We claim that $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha) / \operatorname{Ker} \varphi$ is infinite. To show this, let $C \subseteq W$ be such that $\{v+\operatorname{Im} \alpha \mid v \in C\}$ is a basis of $\operatorname{Ker} \varphi$ and $v+\operatorname{Im} \alpha \neq w+\operatorname{Im} \alpha$ for all distinct $v, w \in C$. For every $v \in C, v \beta+\operatorname{Im} \alpha \beta=(v+\operatorname{Im} \alpha) \varphi=\operatorname{Im} \alpha \beta$. Thus $v \beta \in \operatorname{Im} \alpha \beta=(\operatorname{Im} \alpha) \beta$ for all $v \in C$. As a result, there exists an element $w_{v} \in \operatorname{Im} \alpha$ such that $v \beta=w_{v} \beta$. Consequently, $\left.\left\{v-w_{v} \mid v \in B\right\} \subseteq \operatorname{Ker} \beta\right|_{W}$. If $v_{1}, v_{2}, \ldots, v_{n} \in B$ are all distinct and $\sum_{i=1}^{n} a_{i}\left(v_{i}-w_{v_{i}}\right)=0$ where $a_{1}, a_{2}, \ldots, a_{n} \in R$, then $\sum_{i=1}^{n} a_{i} v_{i}=\sum_{i=1}^{n} a_{i} w_{v_{i}} \in \operatorname{Im} \alpha$, and hence $\sum_{i=1}^{n} a_{i}\left(v_{i}+\operatorname{Im} \alpha\right)=\operatorname{Im} \alpha$ in $W / \operatorname{Im} \alpha$. Thus $a_{i}=0$ for every $i \in\{1,2, \ldots, n\}$. This shows that $\left\{v-w_{v} \mid v \in B\right\}$ is linearly independent over R and $v-w_{v} \neq u-w_{u}$ for all distinct $u, v \in B$. It follows that $|B|=|\{v+\operatorname{Im} \alpha \mid v \in C\}|=\left|\left\{v-w_{v} \mid v \in B\right\}\right| \leq\left.\operatorname{dim}_{R} \operatorname{Ker} \beta\right|_{W}$. Since $\left.\operatorname{dim}_{R} \operatorname{Ker} \beta\right|_{W}<\infty$, it follows from Lemma 2.7 that B is finite. Thus $\operatorname{dim}_{R} \operatorname{Ker} \varphi<\infty$. However, $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)$ is infinite and $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)=$ $\operatorname{dim}_{R}((W / \operatorname{Im} \alpha) / \operatorname{Ker} \varphi)+\operatorname{dim}_{R} \operatorname{Ker} \varphi$, so we can condlude that $\operatorname{dim}_{R}((W / \operatorname{Im} \alpha) / \operatorname{Ker} \varphi)$ is infinite. Then $\operatorname{dim}_{R} \operatorname{Im} \beta / \operatorname{Im} \alpha \beta$ is infinite. Consequently, $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha \beta)$ is infinite, so $\alpha \beta \in O E_{R}(V, W)$.

Proposition 2.9. If S is subsemigroup of $A I_{R}(V, \underline{W})$, then $O E_{R}(V, W) \cup S$ is a subsemigroup of $L_{R}(V, W)$.

Proof. This result is obtained by appliying the fact that $O E_{R}(V, W)$ and S are subsemigroups of $L_{R}(V, W)$, Proposition 2.1 (ii) and Proposition 2.8.

In the similar manner as Lemma 2.5 and Proposition 2.6, we overcome the two following facts.

Lemma 2.10. $O E_{R}(V, W) A I_{R}(\underline{V}, W) \subseteq O E_{R}(V, W)$.
Proposition 2.11. If H is subsemigroup of $A I_{R}(\underline{V}, W)$, then $O E_{R}(V, W) \cup H$ is a subsemigroup of $L_{R}(V, W)$.

2.2 Subsemigroups admitting the structure of semihyperring with zero

We know from the previous section that all $O M_{R}(V, W) \cup S, O E_{R}(V, W) \cup S$, $O M_{R}(V, W) \cup H$ and $O E_{R}(V, W) \cup H$ are semigroups. Thus, it is reasonable to consider whether they admit the structure of a semihyperrings with zero. Fortunately, we can characterize when $O M_{R}(V, W) \cup S$ and $O M_{R}(V, W) \cup H$ admit the structure of a semihyperrings with zero. However, the semigroups $O E_{R}(V, W) \cup S$ and $O E_{R}(V, W) \cup H$ are found that they cannot admit the structure of a semihyperrings with zero.

Theorem 2.12. $O M_{R}(V, W) \cup S$ does not admit the structure of a semihyperring with zero if and only if $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$.

Proof. Let S be a subsemigroup of $A I_{R}(V, \underline{W})$. First, we assume that $\operatorname{dim}_{R} V \neq$ $\operatorname{dim}_{R} W$. Since $O M_{R}(V, W) \subseteq O M_{R}(V, \bar{W}) \cup S \subseteq L_{R}(V, W)$, it follows that $L_{R}(V, W)=O M_{R}(V, W) \cup S$. Thus $O M_{R}(V, W) \cup S$ admits the structure of a ring with zero. Therefore $O M_{R}(V, W) \cup S$ admits the structure of a semihyperring with zero.

On the other hand, we assume that $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$. Let B be a basis of V and C a basis of W such that $C \subseteq B$.

Case 1. $B=C$. We see that $O M_{R}(V, W)=O M_{R}(V)$ and $A I_{R}(V, \underline{W})=$ $A I_{R}(V)$. By [1], $O M_{R}(V, W) \cup S$ does not admit the structure of a semihyperring with zero.

Case 2. $B \neq C$. Suppose that there exist a hyperoperation \oplus such that the structure $\left(O M_{R}(V, W) \cup S, \oplus, \cdot\right)$ is a semihyperring with zero where \cdot is the operation on $O M_{R}(V, W) \cup S$. Then $B \backslash C \neq \emptyset$ since $B \neq C$. Let $D=B \backslash C$ and D_{1}, D_{2} be subsets of D such that $D_{1} \cap D_{2}=\emptyset$ and $D_{1} \cup D_{2}=D$. Since $|B|=|C|$, C is infinite and there are subsets C_{1}, C_{2} of C such that $C_{1} \cap C_{2}=\emptyset, C_{1} \cup C_{2}=C$ and $\left|C_{1}\right|=\left|C_{2}\right|=|C|=|B|$. Since $C_{2} \subseteq C_{1} \cup D_{1} \subseteq B,\left|C_{2}\right|=\left|C_{1} \cup D_{1}\right|$, similarly $\left|C_{1}\right|=\left|C_{2} \cup D_{2}\right|$ and clearly that $B=D_{1} \cup D_{2} \cup C_{1} \cup C_{2}$. Since $\left|C_{1} \cup D_{1}\right|=\left|C_{2}\right|$
and $\left|C_{2} \cup D_{2}\right|=\left|C_{1}\right|$, there are bijections $\varphi: C_{1} \cup D_{1} \rightarrow C_{2}$ and $\gamma: C_{2} \cup D_{2} \rightarrow C_{1}$, respectively. Define $\alpha, \beta \in L_{R}(V, W)$ by

$$
\alpha=\left(\begin{array}{cc}
C_{2} \cup D_{2} & v \\
0 & v \varphi
\end{array}\right)_{v \in C_{1} \cup D_{1}} \quad \beta=\left(\begin{array}{cc}
C_{1} \cup D_{1} & v \\
0 & v \gamma
\end{array}\right)_{v \in C_{2} \cup D_{2}}
$$

Hence $\operatorname{Ker} \alpha=\left\langle C_{2} \cup D_{2}\right\rangle$ and $\operatorname{Ker} \beta=\left\langle C_{1} \cup D_{1}\right\rangle$. Thus $\alpha, \beta \in O M_{R}(V, W) \subseteq$ $O M_{R}(V, W) \cup H$. Clearly, $\alpha^{2}=\beta^{2}=0$. Hence

$$
\begin{align*}
& \alpha(\alpha \oplus \beta)=\alpha^{2} \oplus \alpha \beta=0 \oplus \alpha \beta=\{\alpha \beta\}=\alpha \beta \oplus 0=\alpha \beta \oplus \beta^{2}=(\alpha \oplus \beta) \beta \\
& \beta(\alpha \oplus \beta)=\beta \alpha \oplus \beta^{2}=\beta \alpha \oplus 0=\{\beta \alpha\}=0 \oplus \beta \alpha=\alpha^{2} \oplus \beta \alpha=(\alpha \oplus \beta) \alpha \tag{1}
\end{align*}
$$

Let $\lambda \in \alpha \oplus \beta$. It follows from (1) that $\alpha \lambda=\alpha \beta=\lambda \beta$ and $\beta \lambda=\beta \alpha=\lambda \alpha$. For $v \in C_{1} \cup D_{1}, v \lambda \in\langle C\rangle$ so there are distinct $w_{1}, w_{2}, \ldots, w_{n} \in C_{1}$ and $w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{m}^{\prime} \in C_{2}$ such that

$$
v \lambda=a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}+b_{1} w_{1}^{\prime}+b_{2} w_{2}^{\prime}+\cdots+b_{m} w_{m}^{\prime}
$$

where $a_{i}, b_{j} \in R$ for all $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2, \ldots, m\}$. Note that

$$
\begin{aligned}
0=0 \alpha=(v \beta) \alpha & =v(\beta \alpha) \\
& =v(\lambda \alpha) \\
& =(v \lambda) \alpha \\
& =\left(a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}+b_{1} w_{1}^{\prime}+b_{2} w_{2}^{\prime}+\cdots+b_{m} w_{m}^{\prime}\right) \alpha \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \alpha\right)+\sum_{j=1}^{m} b_{j}\left(w_{j}^{\prime} \alpha\right) \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \varphi\right)
\end{aligned}
$$

Since φ is one to one, $w_{i} \varphi$ are all distinct in C_{2}. Hence $a_{i}=0$ for all i. Thus $v \lambda \in\left\langle C_{2}\right\rangle$. Consider $v \lambda \beta=v \alpha \beta=(v \alpha) \beta=(v \varphi) \beta$. Since $\left.\beta\right|_{C_{2}}$ is one to one, $\left.\beta\right|_{\left\langle C_{2}\right\rangle}$ is also one to one. Thus $v \lambda=v \varphi$ so that $\left.\lambda\right|_{C_{1} \cup D_{1}}=\varphi$. Similarly, for $v \in C_{2} \cup D_{2}$, $\left.\lambda\right|_{C_{2} \cup D_{2}}=\gamma$. Hence

$$
\lambda=\left(\begin{array}{cc}
v & w \\
v \varphi & w \gamma
\end{array}\right)_{v \in C_{1} \cup D_{1}, w \in C_{2} \cup D_{2}}
$$

Thus λ is a one to one linear transformation from V onto W and then $\operatorname{dim}_{R} \operatorname{Ker} \lambda=$ $0<\infty$. Thus $\lambda \notin O M_{R}(V, W)$.

Next, we claim that $\operatorname{dim}_{R}(W / F(\lambda))$ is infinite. Let $v_{1}, v_{2}, \ldots, v_{n} \in C_{1}$ be all distinct and $a_{1}, a_{2}, \ldots, a_{n} \in R$ be such that $\sum_{i=1}^{n} a_{i}\left(v_{i}+F(\lambda)\right)=F(\lambda)$. Then $\sum_{i=1}^{n} a_{i} v_{i} \in F(\lambda)$, so $\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \lambda=\sum_{i=1}^{n} a_{i} v_{i}$. However, $\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \lambda=\sum_{i=1}^{n} a_{i}\left(v_{i} \lambda\right) \in$
$\left\langle C_{2}\right\rangle$. Hence $\sum_{i=1}^{n} a_{i} v_{i} \in\left\langle C_{1}\langle\cap\rangle C_{2}\right\rangle$ implying that $a_{i}=0$ for all i. This shows that $\left\{v+F(\lambda) \mid v \in C_{1}\right\}$ is a linearly independent subset of $W / F(\lambda)$ and $v+F(\lambda) \neq w+$ $F(\lambda)$ for all distinct $v, w \in C_{1}$. Hence $\operatorname{dim}_{R} W / F(\lambda) \geq C_{1}$. Then $\operatorname{dim}_{R} W / F(\lambda)$ is infinite since C_{1} is infinite. Therefore $\lambda \notin S$. Thus $\lambda \notin O M_{R}(V, W) \cup S$ leading to a contradiction.

Corollary 2.13. $O M_{R}(V, W) \cup S$ does not admit hyperring[ring] structure if and only if $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$.

Corollary 2.14. $O M_{R}(V, W) \cup H$ does not admit the structure of a semihyperring with zero if and only if $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$.

Proof. Let H be a subsemigroup of $A I_{R}(\underline{V}, W)$. It is clear that H is a subsemigroup of $A I_{R}(V, \underline{W})$. Applying Theorem [2.12, we obtain that $O M_{R}(V, W) \cup H$ does not admit the structure of a semihyperring with zero if and only if $\operatorname{dim}_{R} V=$ $\operatorname{dim}_{R} W$.

Corollary 2.15. $O M_{R}(V, W) \cup H$ does not admit hyperring[ring] structure if and only if $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$.

Theorem 2.16. $O E_{R}(V, W) \cup S$ does not admit the structure of a semihyperring with zero.

Proof. Let B be a basis of V, C a basis of W such that $C \subseteq B$ and S a subsemigroup of $A I_{R}(V, \underline{W})$.

Case 1. $B=C$. Note that $O E_{R}(V, W)=O E_{R}(V)$ and $A I_{R}(V, \underline{W})=A I_{R}(V)$. By [1], $O E_{R}(V, W) \cup S$ does not admit the structure of a semihyperring with zero.

Case 2.B $\neq C$. Suppose that there exists a hyperoperation \oplus such that $\left(O E_{R}(V, W) \cup S, \oplus, \cdot\right)$ is a semihyperring with zero where \cdot is the operation on $O E_{R}(V, W) \cup S$. Since $\operatorname{dim}_{R} W$ is infinite, C is infinite. There are subsets C_{1}, C_{2} of C such that $C_{1} \cup C_{2}=C, C_{1} \cap C_{2}=\emptyset$ and $\left|C_{1}\right|=\left|C_{2}\right|=|C|$. As a result, there is a bijection $\varphi: C_{1} \rightarrow C_{2}$. Let $C_{3}=B \backslash C$ Then $C_{3} \neq \emptyset$. Define $\alpha, \beta \in L_{R}(V, W)$ by

$$
\alpha=\left(\begin{array}{cc}
C_{2} \cup C_{3} & v \tag{1}\\
0 & v \varphi
\end{array}\right)_{v \in C_{1}} \quad \beta=\left(\begin{array}{cc}
C_{1} \cup C_{3} & v \\
0 & v \varphi^{-1}
\end{array}\right)_{v \in C_{2}}
$$

$\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)=\left|C \backslash C_{2}\right|=\left|C_{1}\right|, \operatorname{dim}_{R}(W / \operatorname{Im} \beta)=\left|C \backslash C_{1}\right|=\left|C_{2}\right|$. Hence $\alpha, \beta \in O E_{R}(V, W) \subset O E_{R}(V, W) \cup S$. Since (1), $\alpha^{2}=0, \beta^{2}=0$. Hence

$$
\begin{align*}
& \alpha(\alpha \oplus \beta)=\alpha^{2} \oplus \alpha \beta=0 \oplus \alpha \beta=\{\alpha \beta\}=\alpha \beta \oplus 0=\alpha \beta \oplus \beta^{2}=(\alpha \oplus \beta) \beta \\
& \beta(\alpha \oplus \beta)=\beta \alpha \oplus \beta^{2}=\beta \alpha \oplus 0=\{\beta \alpha\}=0 \oplus \beta \alpha=\alpha^{2} \oplus \beta \alpha=(\alpha \oplus \beta) \alpha . \tag{2}
\end{align*}
$$

Let $\lambda \in \alpha \oplus \beta$. We can see from (2) that $\alpha \lambda=\alpha \beta=\lambda \beta$ and $\beta \lambda=\beta \alpha=\lambda \alpha$. For $v \in C_{1}, v \lambda=a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}+b_{1} w_{1}^{\prime}+b_{2} w_{2}^{\prime}+\cdots+b_{m} w_{m}^{\prime}$ where
$w_{1}, w_{2}, \ldots, w_{n} \in C_{1}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{m}^{\prime} \in C_{2}$ are all distinct and $a_{i}, b_{j} \in R$ for all i and j. Then

$$
\begin{aligned}
0=v \beta \alpha=v(\beta \alpha) & =v(\lambda \alpha) \\
& =(v \lambda) \alpha \\
& =\left(a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}+b_{1} w_{1}^{\prime}+b_{2} w_{2}^{\prime}+\cdots+b_{m} w_{m}^{\prime}\right) \alpha \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \alpha\right)+\sum_{j=1}^{m} b_{j}\left(w_{j}^{\prime} \alpha\right) \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \alpha\right) \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \varphi\right) .
\end{aligned}
$$

Since φ is one to one, $w_{i} \varphi$ are all distinct in C_{2}. Hence $a_{i}=0$ for all i. Hence $v \lambda \in\left\langle C_{2}\right\rangle$. Consider $v \lambda \beta=v \alpha \beta=(v \alpha) \beta=(v \varphi) \beta$. Since $\left.\beta\right|_{C_{2}}$ is one to one, $\left.\beta\right|_{\left\langle C_{2}\right\rangle}$ is also one to one. Thus $v \lambda=v \varphi$. Therefore $\left.\lambda\right|_{C_{1}}=\varphi$. Similarly, $\left.\lambda\right|_{C_{2}}=\varphi^{-1}$ so $v \lambda=v \varphi^{-1}$ for $v \in C_{2}$. For $v \in C_{3}$, we can write $v \lambda=a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}+$ $b_{1} w_{1}^{\prime}+b_{2} w_{2}^{\prime}+\cdots+b_{m} w_{m}^{\prime}$ where $w_{1}, w_{2}, \ldots, w_{n} \in C_{1}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{m}^{\prime} \in C_{2}$ are all distinct and $a_{i}, b_{j} \in R$ for all i and j. Thus

$$
\begin{aligned}
0=v \beta \alpha=v(\beta \alpha) & =v(\lambda \alpha) \\
& =(v \lambda) \alpha \\
& =\left(a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}+b_{1} w_{1}^{\prime}+b_{2} w_{2}^{\prime}+\cdots+b_{m} w_{m}^{\prime}\right) \alpha \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \alpha\right)+\sum_{j=1}^{m} b_{j}\left(w_{j}^{\prime} \alpha\right) \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \alpha\right) \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \varphi\right) .
\end{aligned}
$$

Since φ is one to one, $w_{i} \varphi$ are all distinct in C_{2}. Hence $a_{i}=0$ for all i. Hence $v \lambda \in\left\langle C_{2}\right\rangle$. Similarly,

$$
\begin{aligned}
0=v \alpha \beta=v(\alpha \beta) & =v(\lambda \beta)=(v \lambda) \beta \\
& =\left(a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}+b_{1} w_{1}^{\prime}+b_{2} w_{2}^{\prime}+\cdots+b_{m} w_{m}^{\prime}\right) \beta \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \beta\right)+\sum_{j=1}^{m} b_{j}\left(w_{j}^{\prime} \beta\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{m} b_{j}\left(w_{j}^{\prime} \beta\right) \\
& =\sum_{j=1}^{m} b_{j}\left(w_{j}^{\prime} \varphi^{-1}\right) .
\end{aligned}
$$

Since φ^{-1} is one to one, $w_{j}^{\prime} \varphi$ are all distinct in C_{1}. Hence $b_{j}=0$ for all j. Thus $v \lambda \in\left\langle C_{1}\right\rangle$ and then $v \lambda \in\left\langle C_{1}\right\rangle \cap\left\langle C_{2}\right\rangle=\{0\}$. Hence

$$
\lambda=\left(\begin{array}{cc}
C_{3} & v \\
0 & v
\end{array}\right)_{v \in C}
$$

Since $\operatorname{dim}_{R}(W / \operatorname{Im} \lambda)=|C \backslash C|=|\emptyset|=0<\infty$, we have $\lambda \notin O E_{R}(V, W)$. Next, we will show that $\operatorname{dim}_{R}(W / F(\lambda))$ is infinite. Let $v_{1}, v_{2}, \ldots, v_{n} \in C_{1}$ be all distinct and $a_{1}, a_{2}, \ldots, a_{n} \in R$ be such that $\sum_{i=1}^{n} a_{i}\left(v_{i}+F(\lambda)\right)=F(\lambda)$. Then $\sum_{i=1}^{n} a_{i} v_{i} \in F(\lambda)$, so $\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \lambda=\sum_{i=1}^{n} a_{i} v_{i}$. But $\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \lambda=\sum_{i=1}^{n} a_{i}\left(v_{i} \lambda\right) \in\left\langle C_{2}\right\rangle$. Hence $\sum_{i=1}^{n} a_{i} v_{i} \in$ $\left\langle C_{1}\langle\cap\rangle C_{2}\right\rangle$ implying that $a_{i}=0$ for all i. This shows that $\left\{v+F(\lambda) \mid v \in C_{1}\right\}$ is a linearly independent subset of $W / F(\lambda)$ and $v+F(\lambda) \neq w+F(\lambda)$ for all distinct $v, w \in C_{1}$. Hence $\operatorname{dim}_{R}(W / F(\lambda)) \geq C_{1}$. Since C_{1} is infinite, $\operatorname{dim}_{R} W / F(\lambda)$ must be infinite. Therefore $\lambda \notin S$. Consequently, $\lambda \notin O M_{R}(V, W) \cup S$ leading to a contradiction.

Corollary 2.17. $O E_{R}(V, W) \cup S$ does not admit hyperring[ring] structure.
Corollary 2.18. $O E_{R}(V, W) \cup H$ does not admit the structure of a semihyperring with zero.

Proof. Let H be a subsemigroup of $A I_{R}(\underline{V}, W)$. Clearly, H is a subsemigroup of $A I_{R}(V, \underline{W})$. By Theorem [2.16, it follows that $O E_{R}(V, W) \cup H$ does not admit the structure of a semihyperring with zero

Corollary 2.19. $O E_{R}(V, W) \cup H$ does not admit hyperring[ring] structure.

References

[1] S.Chaopraknoi and Y. Kemprasit, Some linear transformation semigroups which do not admit the structure of a semihyperring with zero, Proc. ICAA 2002, Chulalongkorn University(2002), 149-158.
[2] P. Corsini, Prolegomena of Hypergroup Theory, Ariana Editore,Udine (1993).
[3] J. R. Isbell, On the multiplicative semigroup of a commutative ring, Proc. Math. Soc., 10 (1959), 908-909. .
[4] Y. Kemprasit and Y. Punkla, Transformation semigroups admitting hyperring structure, Italian Journal of Pure and Appl. Math., (2001).
[5] Y. Kemprasit, Multiplicative interval semigroup on R admitting hyperring structure, Italian Journal of Pure and Appl. Math., (2002)
[6] L. J. M. Lawson, The multiplicative semigroup of a ring, Doctoral dissertation, Univ. of Tennessee, (1969).
[7] S. Chaopraknoi, S. Hobuntud and S. Pianskool, Admitting a semihyperring with zero of certain linear transformation subsemigroups of $L_{R}(V, W)$ (Part I), East-West J. Math., Spec. Vol., for Annual Math. Conf. 2008, Chulalongkorn University, (submitted).
(Received 13 May 2008)
S. Chaopraknoi, S. Hobuntud and S. Painskool

Department of Mathematics,
Faculty of Science,
Chulalongkorn University,
Bangkok 10330, Thailand
e-mail : samkhanhobuntud180@hotmail.com

[^0]: (c) 2008 by the Mathematical Association of Thailand All rights reserve.

