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Admitting a Semihyperring with
Zero of Certain Linear Transformation

Subsemigroups of LR(V, W )

(Part II)
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Abstract : A semihyperring with zero is a triple (A, +, ·) such that (A, +) is a
semihypergroup, (A, ·) is a semigroup, · is distributive over + and there exists 0 ∈ A
(called a zero) such that x+0 = 0+x = {x} and x ·0 = 0 ·x = 0 for all x ∈ A. For
a semigroup S, let S0 be S if S has a zero and S contains more than one element,
otherwise, let S0 be the semigroup S with a zero adjoined. We say that a semi-
group S is said to admit a semihyperring with zero if there exists a hyperoperation
+ on S0 such that (S0,+, ·) is a semihyperring with zero 0 where · is the operation
on S0 and 0 is the zero of S0. Let V be a vector space over a division ring R, W a
subspace of V and LR(V, W ) the semigroup under composition of all linear trans-
formations from V into W . For each α ∈ LR(V,W ), let F (α) consist of all elements
in V fixed by α. Denote by OMR(V,W ), OER(V,W ), AIR(V ,W ) and AIR(V, W )
the set of all linear transformations α in LR(V, W ) where dimR Ker α are infinite,
the set of all linear transformations α in LR(V,W ) where dimR(W/Imα) are infi-
nite, the set of all linear transformations α in LR(V,W ) where dimR(V/F (α)) are
finite and the set of all linear transformations α in LR(V,W ) where dimR(W/F (α))
are finite, respectively. Moreover, let H and S be subsemigroups of AIR(V ,W )
and AIR(V,W ), respectively.

We show that OMR(V, W ) ∪H, OER(V,W ) ∪H, OMR(V,W ) ∪ S and
OER(V,W )∪S are semigroups. Furthermore, we determine whether or when they
admit the structure of a semihyperring with zero.
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1 Introduction and Preliminaries

A hyperoperation on a nonempty set H is a map ◦ : H ×H → P ∗(H) where
P (H) is the power set of H and P ∗(H) = P (H) \ {∅}. For A, B ⊆ H, let A ◦ B
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be the union of all subsets a ◦ b of H where a ∈ A and b ∈ B. A semihypergroup
is a system (H, ◦) where H is a nonemty set, ◦ is a hyperoperation on H and
(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H. A hypergroup is a semihypergroup
(H, ◦) such that H ◦ x = x ◦ H = H for all x ∈ H. For x, y in a hypergroup
(H, ◦), x is called an inverse of y if there exists an identity e of (H, ◦) such that
e ∈ (x ◦ y) ∩ (y ◦ x). A hypergroup H is called regular if every element of H
has an inverse in H. A regular hypergroup (H, ◦) is said to be reversible if for
x, y, z ∈ H, x ∈ y ◦ z implies z ∈ u ◦ x and y ∈ x ◦ v for some inverse u of y and
some inverse v of z. A canonical hypergroup is a hypergroup (H, ◦) such that

(i) (H, ◦) is commutative,

(ii) (H, ◦) has a scalar identity,

(iii) every element of H has a unique inverse in H and

(iv) (H, ◦) is reversible.

By a semihyperring we mean a triple (A, +, ·) such that

(i) (A,+) is a semihypergroup,

(ii) (A, ·) is a semigroup and

(iii) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x for all x, y, z ∈ A.

An element 0 of a semihyperring (A, +, ·) is called a zero of (A, +, ·) if x + 0 =
0 + x = x(= {x} 0) and x ◦ 0 = 0 ◦ x = 0 for all x ∈ A. By the definition, every
semiring with zero is a semihyperring with zero. A Krasner hyperring is a system
(A, +, ·) where

(i) (A,+) is a canonical hypergroup,

(ii) (A, ·) is a semigroup with zero 0 where 0 is the scalar identity of (A, +) and

(iii) the operation · is distributive over the hyperoperation +.

Then every (Krasner) hyperring is a semihyperring with zero. Consequently, semi-
hyperrings with zero are a generalization of hyperrings. In [2], if A is a set whose
cardinality is at least 3 and 0 is an element of A, then (A, +, ·) with

x + 0 = 0 + x = {x} for all x ∈ A,

x + y = A for all x, y ∈ A \ {0} ,

x · y = 0 for all x, y ∈ A.

is clearly a semihyperring with zero 0 but not a hyperring.
A semigroup S is said to admit a ring[hyperring] structure if (S0, +, ·) is a

ring[hyperring] for some operation[hyperoperation] + on S0 where · is the opera-
tion on S0. Similarly, S is said to admit a semihyperring with zero if there exists
a hyperoperation + on S0 such that (S0,+, ·) is a semihyperring with zero. Semi-
groups admitting ring structures have long been studied. For examples, see [3]
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and [6]. There were some studies of semigroups admitting hyperring structures.
These can be seen from [4] and [5].

Throughout this paper, let V be a vector space over a division ring R, W
a subspace of V and LR(V, W ) the semigroup under composition of all linear
transformations from V into W . Then LR(V, W ) admits a ring structure. For
α ∈ LR(V,W ), let F (α) consist of all elements in V fixed by α. Then F (α) is a
subspace of W so that it is also a subspace of V for all α ∈ LR(V, W ). Moreover,
let

OMR(V, W ) = {α ∈ LR(V, W ) | dimR Kerα is infinite} ,

OER(V, W ) = {α ∈ LR(V, W ) | dimR(W/ Im α) is infinite} ,

AIR(V , W ) = {α ∈ LR(V, W ) | dimR(V/F (α)) is finite} ,

AIR(V, W ) = {α ∈ LR(V, W ) | dimR(W/F (α)) is finite} .

It has been shown in [7] that OMR(V,W ) and OER(V, W ) are subsemigroups
of LR(V, W ). This paper, first, shows that OMR(V,W ) ∪ H, OER(V,W ) ∪ H,
OMR(V,W )∪S and OER(V,W )∪S are semigroups where H and S are subsemi-
group of AIR(V ,W ) and AIR(V, W ), respectively. The other purpose of this paper
is showing that whether or when OMR(V, W )∪H, OER(V,W )∪H, OMR(V,W )∪S
and OER(V, W ) ∪ S admit the structure of a semihyperring with zero.

2 Main Results

In this paper, we assume that dimR V is infinite because if dimR V is finite,
then OMR(V, W ) and OER(V,W ) are empty sets. In order to study OER(V,W ),
we must assume further that dimR W is infinite otherwise OER(V, W ) is an empty
set.

2.1 Subsemigroups of LR(V, W )

Our aim of this subsection is to show that OMR(V,W )∪H, OER(V, W )∪H,
OMR(V,W ) ∪ S and OER(V,W ) ∪ S are semigroups. In order to do so, we prove
that all of them are subsemigroups of LR(V, W ).

Proposition 2.1. ([7]) The following statements hold.

(i) OMR(V, W ) is a right ideal of LR(V, W ).

(ii) OER(V, W ) is a left ideal of LR(V,W ).

Note 2.1. AIR(V ,W ) is a subset of AIR(V,W ) because W/F (α) is a subspace of
V/F (α) for any α ∈ LR(V, W ).

Proposition 2.2. AIR(V , W ) and AIR(V,W ) are subsemigroups of LR(V, W ).
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Proof. Let α, β ∈ AIR(V ,W )[AIR(V,W )]. Then dimR(V/F (α))[dimR(W/F (α))]
and dimR(V/F (β))[dimR(W/F (β))] are finite. We claim that dimR(V/F (αβ))
[dimR(W/F (αβ))] is finite. Since F (α) ∩ F (β) ⊆ F (αβ), it suffices to show that
dimR(V/F (α) ∩ F (β))[dimR(W/(F (α) ∩ F (β))] is finite. Let B1 be a basis of
F (α) ∩ F (β) and B2 ⊆ F (α) \B1 and B3 ⊆ F (β) \ B1 be such that B1 ∪B2 and
B1∪B3 are bases of F (α) and F (β), respectively. We will show that (B1∪B2)∪B3

is linearly independent over R. Let u1, u2, . . . , uk ∈ B1 ∪B2, v1, v2, . . . , vl ∈ B3 be

distinct and
k∑

i=1

aiui +
l∑

j=1

bjvj = 0 where a1, a2, . . . , ak, b1, b2, . . . , bl ∈ R. Then

k∑

i=1

aiui = −
l∑

j=1

bjvj ∈ F (α) ∩ F (β) = 〈B1〉. Hence
l∑

j=1

bjvj ∈ 〈B1〉 ∩ 〈B3〉 = {0}.

Since B3 is linearly independent, bj = 0 for all j = 1, 2, . . . , l, so that
k∑

i=1

aiui = 0.

This implies that ai = 0 for all i = 1, 2, . . . , k. Hence (B1 ∪ B2) ∪ B3 is linearly
independent over R. Let B4 ⊆ V \ (B1∪B2)∪B3[W \ (B1∪B2)∪B3] be such that
B1 ∪ B2 ∪ B3 ∪ B4 is a basis of V [W ]. Hence {v + F (α) | v ∈ B3 ∪B4} is a basis
of V/F (α)[W/F (α)] and {v + F (α) | v ∈ B2 ∪B4} is a basis of V/F (β)[W/F (β)].
But dimR(V/F (α))[dimR(W/F (α))] and dimR(V/F (β))[dimR(W/F (β))] are fi-
nite, so B3 ∪ B4 and B2 ∪ B4 are finite. Therefore B2 ∪ B3 ∪ B4 is finite. Hence
{v + (F (α) ∩ F (β))} is a basis of V/(F (α)∩F (β))[W/(F (α)∩F (β))]. This implies
that dimR(V/F (α) ∩ F (β))[dimR(W/(F (α) ∩ F (β))] is finite.

Lemma 2.3. AIR(V,W )OMR(V, W ) ⊆ OMR(V,W ).

Proof. Let α ∈ AIR(V, W ) and β ∈ OMR(V, W ). Let B1 be a basis of F (α)∩Ker β,
B2 ⊆ Ker β \B1 such that B1 ∪B2 is a basis of Ker β ∩W, B3 ⊆ Ker β \B1 ∪B2

such that B1 ∪B2 ∪B3 is a basis of Ker β. Since β ∈ OMR(V,W ), B1 ∪B2 ∪B3

is infinite. Let v1, v2, . . . , vn be distinct elements of B2 and let a1, a2, . . . , an ∈ R

be such that
n∑

i=1

ai(vi + F (α)) = F (α). Then
n∑

i=1

aivi ∈ F (α) ∩Kerβ. But B1 is

a basis of F (α) ∩Ker β and B1 ∪B2 is linearly independent over R, so ai = 0 for
all i ∈ {1, 2, . . . , n}. This shows that {v + F (α)|v ∈ B2} is a linearly independent
subset of the quotient space W/F (α) and u + F (α) 6= w + F (α) for all distinct
u,w ∈ B2. Since dimR W/F (α) < ∞, the set {v + F (α)|v ∈ B2} is finite. But∣∣{v + F (α)|v ∈ B2}

∣∣ = |B2| so that B2 is finite. Let B4 ⊆ W \ B1 ∪ B2 be such
that B1 ∪ B2 ∪ B4 is a basis of W and let C = B1 ∪ B2 ∪ B4. Moreover, let
B5 ⊆ V \C ∪B3 be such that C ∪B3∪B5 is a basis of V and let B = C ∪B3∪B5.

Case 1. B\C is finite. Since B3 ⊆ B \ C, |B3| ≤ |B \ C|. Thus B3 is finite.
Hence B2 ∪B3 is finite. This implies that B1 is infinite. Since B1 ⊆ F (α)∩Ker β,
we have B1αβ = B1β = {0}, so B1 ⊆ Kerαβ. Hence dimR Kerαβ is infinite.
Thus αβ ∈ OMR(V, W ).

Case 2. B \C is infinite. Claim that dimR Kerα is infinite. Suppose that
dimR Ker α is finite. Let E = {v′1, v′2, . . . , v′k} be a basis of Ker α such that E ⊆ B.
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Clearly, B\(C∪E) is infinite. Next, we will show that there is w ∈ B\(C∪E) such
that wα = vα for some v ∈ V \ 〈E ∪ {w}〉. Suppose that for each w ∈ B \ (C ∪E),

wα 6= vα for all v ∈ V \ 〈E ∪ {w}〉. (1)

Hence

w1α 6= w2α for every w1 6= w2 ∈ B\(C ∪ E). (2)

Hence {wα |w ∈ B \ (C ∪ E)} consists of distinct elements. Since B \ (C ∪ E)
is infinite, the set {wα |w ∈ B \ (C ∪ E)} must be infinite. We will show that
{wα |w ∈ B \ (C ∪ E)} is linearly independent set. Assume that

a1w1α + a2w2α + · · ·+ anwnα = 0

where a1, a2, . . . , an ∈ R and w1, w2, . . . , wn ∈ B\(C ∪ E). Hence

(a1w1 + a2w2 + · · ·+ anwn)α = 0.

Therefore a1w1 + a2w2 + · · ·+ anwn ∈ Kerα. Hence

a1w1 + a2w2 + · · ·+ anwn ∈ 〈E〉 ∩ 〈B \ (C ∪ E)〉 = {0}.
Consequently, a1w1+a2w2+· · ·+anwn = 0 so that a1 = a2 = · · · = an = 0. Hence
{wα |w ∈ B \ (C ∪ E)} is linearly independent. Let w∗ ∈ B \ (C ∪ E). Suppose
that (w∗α)α = w∗α, so w∗α ∈ 〈E ∪ {w∗}〉 because w∗α 6= w∗. Then there are

b, a1, a2, . . . , ak ∈ R such that w∗α = bw∗ +
k∑

i=1

aiv
′
i. Thus

bw∗ = w∗α−
k∑

i=1

aiv
′
i ∈ 〈C ∪ E〉.

Hence bw∗ ∈ 〈B \ (C ∪ E)〉 ∩ 〈C ∪ E〉 = {0}, we have bw∗ = 0. Thus

w∗α = bw∗ +
k∑

i=1

aiv
′
i =

k∑

i=1

aiv
′
i ∈ Kerα,

so 0 = (w∗α)α = w∗α. Therefore w∗ ∈ Kerα which leads to a contradiction. Thus
(w∗α)α 6= w∗α. Hence wα /∈ F (α) for all w ∈ B \ (C ∪ E). Next, we will show
that {wα + F (α) |w ∈ B \ (C ∪ E)} is a linearly independent subset of W/F (α).
Assume that

n∑

i=1

ai(wiα + F (α)) = F (α)

where a1, a2, . . . , an ∈ R and w1, w2, . . . , wn ∈ B\(C∪E). Hence
n∑

i=1

aiwiα ∈ F (α).

Therefore
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(
n∑

i=1

aiwiα

)
α =

n∑

i=1

aiwiα ∈ F (α).

Thus

(
n∑

i=1

aiwiα−
n∑

i=1

aiwi

)
α = 0. Hence

n∑

i=1

aiwiα −
n∑

i=1

aiwi ∈ Ker α. It

follows that

n∑

i=1

aiwiα−
n∑

i=1

aiwi =
k∑

j=1

bjv
′
j .

Thus

n∑

i=1

aiwi =
n∑

i=1

aiwiα−
k∑

j=1

bjv
′
j ∈ 〈C ∪ E〉.

This implies that
n∑

i=1

aiwi ∈ 〈B\(C ∪ E)〉∩〈C ∪ E〉 = {0}. Since {wα |w ∈ B\(C ∪ E)}

is linearly independent, a1 = a2 = · · · = an = 0. Hence {wα + F (α) |w ∈ B\(C ∪ E)}
is a linearly independent subset of W/F (α).

We will show that for all v, w ∈ B \ (C ∪ E), if vα 6= wα, then

vα + F (α) 6= wα + F (α).

Let v, w ∈ B \ (C ∪ E). Assume that vα 6= wα. Suppose that vα + F (α) =
wα + F (α). We see that vα − wα ∈ F (α). Hence (vα − wα)α = vα − wα. Thus
(vα− wα)α + wα = vα. Therefore

(vα− wα + w)α = vα. (3)

If vα − wα + w ∈ 〈E ∪ {v}〉, then there are b, a1, a2, . . . , ak ∈ R such that

vα − wα + w = bv +
k∑

i=1

aiv
′
i. Clearly, bv − w = vα − wα −

k∑

i=1

aiv
′
i ∈ 〈C ∪ E〉.

Therefore bv − w ∈ 〈B \ (C ∪ E)〉 ∩ 〈C ∪ E〉 = {0}. This leads to a contradiction
because of bv = w. Hence vα − wα + w /∈ 〈E ∪ {v}〉. It follows from (1) that
(vα−wα+w)α 6= vα contradicting (3). Thus | {wα + F (α) |w ∈ B \ (C ∪ E)} | =
| {wα |w ∈ B \ (C ∪ E)} |. Since {wα + F (α) |w ∈ B \ (C ∪ E)} is a linearly inde-
pendent subset of W/F (α) and {wα |w ∈ B \ (C ∪ E)} is infinite, dimR W/F (α)
is infinite. A contradiction occurs. Thus there is a w ∈ B \ (C ∪ E) such that
wα = vα for some v ∈ V \ 〈E ∪ {w}〉. Since v ∈ V , there are v1, v2, . . . , vm ∈ B
and b1, b2, . . . , bm ∈ R such that v = b1v1 + b2v2 + · · · + bmvm. It is clear that
there is vi /∈ E for some i ∈ {1, 2, . . . , m} because v /∈ Kerα and if w = vj for
some j ∈ {1, 2, . . . , m}, there is vk /∈ E ∪ {w} for some k ∈ {1, 2, . . . ,m}. With-
out loss of generality, v = b1v1 + b2v2 + · · · + blvl + bl+1vl+1 + · · · + bmvm where
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vl+1, vl+2, . . . , vm ∈ E. Let w′ = b1v1 + b2v2 + · · ·+ blvl. Note that

wα = vα

= (b1v1 + b2v2 + · · ·+ blvl + bl+1vl+1 + · · ·+ bmvm)α
= (b1v1 + b2v2 + · · ·+ blvl)α
= w′α.

Hence wα = w′α = (b1v1+b2v2+· · ·+blvl)α so (w − b1v1 − b2v2 − · · · − blvl)α = 0.
It follows that w − b1v1 − b2v2 − · · · − blvl ∈ Ker α. Thus

w − b1v1 − b2v2 − · · · − blvl = c1v
′
1 + c2v

′
2 + · · ·+ ckv′k.

Therefore

w = b1v1 + b2v2 + · · ·+ blvl + c1v
′
1 + c2v

′
2 + · · ·+ ckv′k.

Subcase 2.1 w 6= vj for all j ∈ {1, 2, . . . , l}. Hence w can be written in a
linear combination of B\{w} which is a contradiction.

Subcase 2.2 w = vj for some j ∈ {1, 2, . . . , l}. Without loss of generality,
assume that w = v1. Hence

w = b1v1 + b2v2 + · · ·+ blvl + c1v
′
1 + c2v

′
2 + · · ·+ ckv′k.

Thus 0 = (b1− 1)w + b2v2 + · · ·+ blvl + c1v
′
1 + c2v

′
2 + · · ·+ ckv′k. This implies that

b1 − 1 = b2 = · · · = bl = c1 = · · · = ck = 0

We obtain that b1 = 1, w′ = b1v1 = w. Thus

v = b1v1 + b2v2 + · · ·+ blvl + bl+1vl+1 + · · ·+ bmvm

= w′ + bl+1vl+1 + · · ·+ bmvm

= w + bl+1vl+1 + · · ·+ bmvm

∈ 〈C ∪ E〉 ,

again, a contradiction occurs. Hence Ker α is infinite. Since Ker α ⊆ Kerαβ,
Ker αβ is infinite. Therefore αβ ∈ OMR(V, W ).

Proposition 2.4. If S is a subsemigroup of AIR(V,W ), then OMR(V, W )∪ S is
a subsemigroup of LR(V,W ).

Proof. This follows from the fact that OMR(V, W ) and S are subsemigroups of
LR(V, W ), Proposition 2.1(i) and Lemma 2.3.

Lemma 2.5. AIR(V ,W )OMR(V,W ) ⊆ OMR(V, W ).

Proof. The result follows the fact that AIR(V ,W ) ⊆ AIR(V,W ).

Proposition 2.6. If H is subsemigroup of AIR(V , W ), then OMR(V, W ) ∪H is
a subsemigroup of LR(V,W ).
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Proof. Proposition 2.1(i), Lemma 2.5 and the truth that both OMR(V,W ) and H
are susemigroups of LR(V, W ) provide this result.

Lemma 2.7. For every α ∈ AIR(V, W ), dimR Kerα|W < ∞.

Proof. Let α ∈ AIR(V, W ) and B a basis of Ker α|W . Moreover, let v1, v2, . . . , vn ∈ B

be distinct and a1, a2, . . . , an ∈ R be such that
n∑

i=1

ai(vi + F (α)) = F (α). Then

n∑

i=1

aivi = F (α) which implies that

(
n∑

i=1

aivi

)
α =

n∑

i=1

aivi. But v1, v2, . . . , vn ∈

Kerα|W so that

(
n∑

i=1

aivi

)
α = 0. Thus

n∑

i=1

aivi = 0. Since v1, v2, . . . , vn are

linearly independent over R, it follows that ai = 0 for every i ∈ {1, 2, . . . , n}.
This proves that {v + F (α)|v ∈ B} is a linearly independent subset of W/F (α)
and v + F (α) 6= w + F (α) for all distinct v, w ∈ B. Since dimR(W/F (α))
is finite, {v + F (α)|v ∈ B} is finite. Since | {v + F (α)|v ∈ B} | = |B|, we have
dimR Ker α|W < ∞.

Proposition 2.8. OER(V, W )AIR(V, W ) ⊆ OER(V, W ).

Proof. Let α ∈ OER(V, W ) and β ∈ AIR(V,W ). Define ϕ : W/ Im α → Im β|W / Im αβ
by

(w + Im α)ϕ = wβ + Im αβ for all w ∈ W .

Then ϕ is an epimorphism. Hence

(W/ Im α)/ Kerϕ ∼= Im β|W / Im αβ.

We claim that dimR(W/ Imα)/ Ker ϕ is infinite. To show this, let C ⊆ W be
such that {v + Im α|v ∈ C} is a basis of Kerϕ and v + Im α 6= w + Im α for
all distinct v, w ∈ C. For every v ∈ C, vβ + Im αβ = (v + Im α)ϕ = Im αβ.
Thus vβ ∈ Im αβ = (Im α)β for all v ∈ C. As a result, there exists an element
wv ∈ Imα such that vβ = wvβ. Consequently,{v − wv|v ∈ B} ⊆ Kerβ|W . If

v1, v2, . . . , vn ∈ B are all distinct and
n∑

i=1

ai(vi−wvi) = 0 where a1, a2, . . . , an ∈ R,

then
n∑

i=1

aivi =
n∑

i=1

aiwvi ∈ Imα, and hence
n∑

i=1

ai(vi + Im α) = Im α in W/ Im α.

Thus ai = 0 for every i ∈ {1, 2, . . . , n}. This shows that {v − wv|v ∈ B} is lin-
early independent over R and v − wv 6= u − wu for all distinct u, v ∈ B. It
follows that |B| = | {v + Im α|v ∈ C} | = | {v − wv|v ∈ B} | ≤ dimR Ker β|W .
Since dimR Kerβ|W < ∞, it follows from Lemma 2.7 that B is finite. Thus
dimR Ker ϕ < ∞. However, dimR(W/ Im α) is infinite and dimR(W/ Imα) =
dimR((W/ Im α)/ Kerϕ)+dimR Ker ϕ, so we can condlude that dimR((W/ Imα)/ Kerϕ)
is infinite. Then dimR Im β/ Imαβ is infinite. Consequently, dimR(W/ Im αβ) is
infinite, so αβ ∈ OER(V, W ).
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Proposition 2.9. If S is subsemigroup of AIR(V,W ), then OER(V, W ) ∪ S is a
subsemigroup of LR(V, W ).

Proof. This result is obtained by appliying the fact that OER(V,W ) and S are
subsemigroups of LR(V,W ), Proposition 2.1(ii) and Proposition 2.8.

In the similar manner as Lemma 2.5 and Proposition 2.6, we overcome the two
following facts.

Lemma 2.10. OER(V, W )AIR(V ,W ) ⊆ OER(V, W ).

Proposition 2.11. If H is subsemigroup of AIR(V , W ), then OER(V, W )∪H is
a subsemigroup of LR(V,W ).

2.2 Subsemigroups admitting the structure of semihyper-
ring with zero

We know from the previous section that all OMR(V, W )∪S, OER(V, W )∪S,
OMR(V,W ) ∪ H and OER(V,W ) ∪ H are semigroups. Thus, it is reasonable to
consider whether they admit the structure of a semihyperrings with zero. Fortu-
nately, we can characterize when OMR(V, W )∪S and OMR(V, W )∪H admit the
structure of a semihyperrings with zero. However, the semigroups OER(V,W )∪S
and OER(V, W )∪H are found that they cannot admit the structure of a semihy-
perrings with zero.

Theorem 2.12. OMR(V, W )∪S does not admit the structure of a semihyperring
with zero if and only if dimR V = dimR W .

Proof. Let S be a subsemigroup of AIR(V, W ). First, we assume that dimR V 6=
dimR W . Since OMR(V, W ) ⊆ OMR(V,W ) ∪ S ⊆ LR(V, W ), it follows that
LR(V, W ) = OMR(V,W ) ∪ S. Thus OMR(V, W ) ∪ S admits the structure of a
ring with zero. Therefore OMR(V, W )∪S admits the structure of a semihyperring
with zero.

On the other hand, we assume that dimR V = dimRW . Let B be a basis of V
and C a basis of W such that C ⊆ B.

Case 1.B = C. We see that OMR(V,W ) = OMR(V ) and AIR(V, W ) =
AIR(V ). By [1], OMR(V, W )∪S does not admit the structure of a semihyperring
with zero.

Case 2.B 6= C. Suppose that there exist a hyperoperation ⊕ such that
the structure (OMR(V, W ) ∪ S,⊕, ·) is a semihyperring with zero where · is the
operation on OMR(V,W ) ∪ S. Then B \ C 6= ∅ since B 6= C. Let D = B \ C and
D1, D2 be subsets of D such that D1∩D2 = ∅ and D1∪D2 = D. Since |B| = |C|,
C is infinite and there are subsets C1, C2 of C such that C1∩C2 = ∅, C1∪C2 = C
and |C1| = |C2| = |C| = |B|. Since C2 ⊆ C1 ∪D1 ⊆ B, |C2| = |C1 ∪D1|, similarly
|C1| = |C2 ∪D2| and clearly that B = D1 ∪D2 ∪ C1 ∪ C2. Since |C1 ∪D1| = |C2|
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and |C2∪D2| = |C1|, there are bijections ϕ : C1∪D1 → C2 and γ : C2∪D2 → C1,
respectively. Define α, β ∈ LR(V,W ) by

α =
(

C2 ∪D2 v
0 vϕ

)

v∈C1∪D1

β =
(

C1 ∪D1 v
0 vγ

)

v∈C2∪D2

Hence Ker α = 〈C2 ∪D2〉 and Ker β = 〈C1 ∪D1〉. Thus α, β ∈ OMR(V, W ) ⊆
OMR(V, W ) ∪H. Clearly, α2 = β2 = 0. Hence

α(α⊕ β) = α2 ⊕ αβ = 0⊕ αβ = {αβ} = αβ ⊕ 0 = αβ ⊕ β2 = (α⊕ β)β
β(α⊕ β) = βα⊕ β2 = βα⊕ 0 = {βα} = 0⊕ βα = α2 ⊕ βα = (α⊕ β)α (1)

Let λ ∈ α ⊕ β. It follows from (1) that αλ = αβ = λβ and βλ = βα = λα.
For v ∈ C1 ∪ D1, vλ ∈ 〈C〉 so there are distinct w1, w2, . . . , wn ∈ C1 and
w′1, w

′
2, . . . , w

′
m ∈ C2 such that

vλ = a1w1 + a2w2 + · · ·+ anwn + b1w
′
1 + b2w

′
2 + · · ·+ bmw′m

where ai, bj ∈ R for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. Note that

0 = 0α = (vβ)α = v(βα)
= v(λα)
= (vλ)α
= (a1w1 + a2w2 + · · ·+ anwn + b1w

′
1 + b2w

′
2 + · · ·+ bmw′m)α

=
n∑

i=1

ai(wiα) +
m∑

j=1

bj(w′jα)

=
n∑

i=1

ai(wiϕ)

Since ϕ is one to one, wiϕ are all distinct in C2. Hence ai = 0 for all i. Thus
vλ ∈ 〈C2〉. Consider vλβ = vαβ = (vα)β = (vϕ)β. Since β|C2 is one to one, β|〈C2〉
is also one to one. Thus vλ = vϕ so that λ|C1∪D1 = ϕ. Similarly, for v ∈ C2 ∪D2,
λ|C2∪D2 = γ. Hence

λ =
(

v w
vϕ wγ

)

v∈C1∪D1,w∈C2∪D2

Thus λ is a one to one linear transformation from V onto W and then dimR Ker λ =
0 < ∞. Thus λ /∈ OMR(V, W ).

Next, we claim that dimR(W/F (λ)) is infinite. Let v1, v2, . . . , vn ∈ C1 be

all distinct and a1, a2, . . . , an ∈ R be such that
n∑

i=1

ai(vi + F (λ)) = F (λ). Then

n∑

i=1

aivi ∈ F (λ), so

(
n∑

i=1

aivi

)
λ =

n∑

i=1

aivi. However,

(
n∑

i=1

aivi

)
λ =

n∑

i=1

ai(viλ) ∈
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〈C2〉. Hence
n∑

i=1

aivi ∈ 〈C1 〈∩〉C2〉 implying that ai = 0 for all i. This shows that

{v + F (λ)|v ∈ C1} is a linearly independent subset of W/F (λ) and v+F (λ) 6= w+
F (λ) for all distinct v, w ∈ C1. Hence dimR W/F (λ) ≥ C1. Then dimR W/F (λ)
is infinite since C1 is infinite. Therefore λ /∈ S. Thus λ /∈ OMR(V, W )∪ S leading
to a contradiction.

Corollary 2.13. OMR(V,W )∪S does not admit hyperring[ring] structure if and
only if dimR V = dimR W .

Corollary 2.14. OMR(V, W )∪H does not admit the structure of a semihyperring
with zero if and only if dimR V = dimR W .

Proof. Let H be a subsemigroup of AIR(V ,W ). It is clear that H is a subsemi-
group of AIR(V,W ). Applying Theorem 2.12, we obtain that OMR(V,W ) ∪ H
does not admit the structure of a semihyperring with zero if and only if dimR V =
dimR W .

Corollary 2.15. OMR(V, W )∪H does not admit hyperring[ring] structure if and
only if dimR V = dimR W .

Theorem 2.16. OER(V, W )∪S does not admit the structure of a semihyperring
with zero.

Proof. Let B be a basis of V , C a basis of W such that C ⊆ B and S a subsemi-
group of AIR(V, W ).

Case 1.B = C. Note that OER(V, W ) = OER(V ) and AIR(V,W ) = AIR(V ).
By [1], OER(V, W )∪S does not admit the structure of a semihyperring with zero.

Case 2.B 6= C. Suppose that there exists a hyperoperation ⊕ such that
(OER(V, W ) ∪ S,⊕, ·) is a semihyperring with zero where · is the operation on
OER(V,W ) ∪ S. Since dimR W is infinite, C is infinite. There are subsets C1, C2

of C such that C1 ∪C2 = C, C1 ∩C2 = ∅ and |C1| = |C2| = |C|. As a result, there
is a bijection ϕ : C1 → C2. Let C3 = B \C Then C3 6= ∅. Define α, β ∈ LR(V, W )
by

α =
(

C2 ∪ C3 v
0 vϕ

)

v∈C1

β =
(

C1 ∪ C3 v
0 vϕ−1

)

v∈C2

(1)

dimR(W/Imα) = |C \ C2| = |C1|, dimR(W/Imβ) = |C \ C1| = |C2|. Hence
α, β ∈ OER(V, W ) ⊂ OER(V, W ) ∪ S. Since (1), α2 = 0, β2 = 0. Hence

α(α⊕ β) = α2 ⊕ αβ = 0⊕ αβ = {αβ} = αβ ⊕ 0 = αβ ⊕ β2 = (α⊕ β)β
β(α⊕ β) = βα⊕ β2 = βα⊕ 0 = {βα} = 0⊕ βα = α2 ⊕ βα = (α⊕ β)α.

(2)

Let λ ∈ α ⊕ β. We can see from (2) that αλ = αβ = λβ and βλ = βα = λα.
For v ∈ C1, vλ = a1w1 + a2w2 + · · · + anwn + b1w

′
1 + b2w

′
2 + · · · + bmw′m where
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w1, w2, . . . , wn ∈ C1, w′1, w
′
2, . . . , w

′
m ∈ C2 are all distinct and ai, bj ∈ R for all i

and j. Then

0 = vβα = v(βα) = v(λα)
= (vλ)α
= (a1w1 + a2w2 + · · ·+ anwn + b1w

′
1 + b2w

′
2 + · · ·+ bmw′m)α

=
n∑

i=1

ai(wiα) +
m∑

j=1

bj(w′jα)

=
n∑

i=1

ai(wiα)

=
n∑

i=1

ai(wiϕ).

Since ϕ is one to one, wiϕ are all distinct in C2. Hence ai = 0 for all i. Hence
vλ ∈ 〈C2〉. Consider vλβ = vαβ = (vα)β = (vϕ)β. Since β|C2 is one to one, β|〈C2〉
is also one to one. Thus vλ = vϕ. Therefore λ|C1 = ϕ. Similarly, λ|C2 = ϕ−1 so
vλ = vϕ−1 for v ∈ C2. For v ∈ C3, we can write vλ = a1w1 + a2w2 + · · ·+anwn +
b1w

′
1 + b2w

′
2 + · · ·+ bmw′m where w1, w2, . . . , wn ∈ C1, w′1, w

′
2, . . . , w

′
m ∈ C2 are all

distinct and ai, bj ∈ R for all i and j. Thus

0 = vβα = v(βα) = v(λα)
= (vλ)α
= (a1w1 + a2w2 + · · ·+ anwn + b1w

′
1 + b2w

′
2 + · · ·+ bmw′m)α

=
n∑

i=1

ai(wiα) +
m∑

j=1

bj(w′jα)

=
n∑

i=1

ai(wiα)

=
n∑

i=1

ai(wiϕ).

Since ϕ is one to one, wiϕ are all distinct in C2. Hence ai = 0 for all i. Hence
vλ ∈ 〈C2〉. Similarly,

0 = vαβ = v(αβ) = v(λβ) = (vλ)β
= (a1w1 + a2w2 + · · ·+ anwn + b1w

′
1 + b2w

′
2 + · · ·+ bmw′m)β

=
n∑

i=1

ai(wiβ) +
m∑

j=1

bj(w′jβ)
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=
m∑

j=1

bj(w′jβ)

=
m∑

j=1

bj(w′jϕ
−1).

Since ϕ−1 is one to one, w′jϕ are all distinct in C1. Hence bj = 0 for all j. Thus
vλ ∈ 〈C1〉 and then vλ ∈ 〈C1〉 ∩ 〈C2〉 = {0}. Hence

λ =
(

C3 v
0 v

)

v∈C

Since dimR(W/ Im λ) = |C \C| = |∅| = 0 < ∞, we have λ /∈ OER(V, W ). Next, we
will show that dimR(W/F (λ)) is infinite. Let v1, v2, . . . , vn ∈ C1 be all distinct and

a1, a2, . . . , an ∈ R be such that
n∑

i=1

ai(vi +F (λ)) = F (λ). Then
n∑

i=1

aivi ∈ F (λ), so
(

n∑

i=1

aivi

)
λ =

n∑

i=1

aivi. But

(
n∑

i=1

aivi

)
λ =

n∑

i=1

ai(viλ) ∈ 〈C2〉. Hence
n∑

i=1

aivi ∈

〈C1 〈∩〉C2〉 implying that ai = 0 for all i. This shows that {v + F (λ)|v ∈ C1} is a
linearly independent subset of W/F (λ) and v + F (λ) 6= w + F (λ) for all distinct
v, w ∈ C1. Hence dimR(W/F (λ)) ≥ C1. Since C1 is infinite, dimRW/F (λ) must
be infinite. Therefore λ /∈ S. Consequently, λ /∈ OMR(V, W ) ∪ S leading to a
contradiction.

Corollary 2.17. OER(V, W ) ∪ S does not admit hyperring[ring] structure.

Corollary 2.18. OER(V, W )∪H does not admit the structure of a semihyperring
with zero.

Proof. Let H be a subsemigroup of AIR(V ,W ). Clearly, H is a subsemigroup of
AIR(V, W ). By Theorem 2.16, it follows that OER(V,W )∪H does not admit the
structure of a semihyperring with zero

Corollary 2.19. OER(V, W ) ∪H does not admit hyperring[ring] structure.
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